poprox_recommender.evaluation.evaluate#
Generate evaluations for offline test data.
For an evaluation EVAL and PIPELINE, this script reads outputs/DATA/PIPELINE/recommendations.parquet and produces ouptuts/DATA/PIPELINE/profile-metrics.csv.gz and ouptuts/DATA/PIPELINE/metrics.json.
- Usage:
poprox_recommender.evaluation.evaluate [options] EVAL PIPELINE
- Options:
- -v, --verbose
enable verbose diagnostic logs
- --log-file=FILE
write log messages to FILE
- -M DATA, --mind-data=DATA
read MIND test data DATA [default: MINDsmall_dev]
- -P DATA, --poprox-data=DATA
read POPROX test data DATA
EVAL the name of the evaluation to measure PIPELINE
the name of the pipeline to measure
Functions
|
|
|
|
|
Iterate over rec profiles, yielding each recommendation list with its truth and whether the profile is personalized. |
- poprox_recommender.evaluation.evaluate.rec_profiles(eval_data, profile_recs)#
Iterate over rec profiles, yielding each recommendation list with its truth and whether the profile is personalized. This supports parallel computation of the final metrics.
- Parameters:
eval_data (EvalData)
profile_recs (DataFrame)
- Return type: